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Abstract. Droughts are defined as extended periods of below-average rainfall resulting in a shortage of water and have 

significant impacts on ecosystems, agriculture, and water supplies. One of the most challenging aspects of addressing drought 

is trend patterns and developing accurate prediction models that will be crucial for efficient mitigation and resource 

management. Analyzing drought is inherently uncertain and complex due to the dynamic and evolving character of climate 

trends. This study used a special method called the modified Mann-Kendall (MMK) approach and a new trend analysis (ITA) 15 

to find trends and introduced a better way to make predictions by using the Standardized Precipitation Index (SPI) along with 

a combined model that takes advantage of the Savitzky-Golay filter and Complete Ensemble Empirical Mode Decomposition 

with Adaptive Noise (SG-CEEMDAN) for preparation, plus Autoregressive Integrated Moving Average (ARIMA) and Long 

Short-Term Memory (LSTM) techniques. In terms of trend analysis of the SPIs, MK and MMK tests revealed a most 

statistically significant decreasing trend. For example, Pongolapoort Dam showed negative Z-score (p-values) for the SPI-6, 20 

SPI-9, and SPI-12 in the MK and MMK tests, which are represented as (−7.19 (6.12𝑒−13), −8.74(< 0.00), −9.83 (< 0.00) 

and −8.22 (2.22𝑒−16), −5.44 (5.40𝑒−8), −6.51 (7.41𝑒−11),  respectively. Additionally, the ITA confirmed a significant 

downward trend across all time scales of the SPI. The SPI forecasting results show that the hybrid model, called SG-

CEEMDAN-ARIMA-LSTM, had the best prediction accuracy compared to all other models for every SPI time scale. The 

coefficient of determination (R²) values of the proposed hybrid model was notably high: 0.9839 for SPI-6, 0.9892 for SPI-9, 25 

and 0.9990 for SPI-12. This demonstrates that the hybrid model offers the best fit to the data and is the most suitable choice 

for forecasting short-to-long-term drought conditions in the uMkhanyakude district. Furthermore, the inclusion of 

decomposition techniques, such as SG, CEEMDAN, and SG-CEEMDAN, significantly enhances the performance of the 

model.  
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1.  Introduction  

Drought is an extended hydrometeorological phenomenon that affects large areas and inflicts considerable harm (Bagmar and 35 

Khudri, 2021; Kalisa et al., 2021; Song and Park, 2023). Drought is among the most devastating natural phenomena due to its 

extensive and enduring impacts (Marengo et al., 2017; Jahanzaib et al., 2021; Dikshit et al., 2022; Gavahi et al., 2022). Drought 

emerged from climate change, resulting in elevated global temperatures and less precipitation (Chen et al., 2024). Prolonged 

exceptionally low precipitation leads to water scarcity and can cause soil moisture deficiency, hence significantly jeopardizing 

food security (Wang et al., 2023). Drought, a frequent and intricate climatic occurrence, has historically had adverse 40 

consequences on economic, environmental, and social sectors, negatively impacting civilization (Hinge et al., 2022; Xu et al., 

2022). Drought is defined as extended water deficiency that adversely affects edaphic, hydrological, meteorological, and social 

elements (Wilhite and Glantz, 1985; Cunha et al., 2019; Adeola et al., 2021; Shang et al., 2023). The occurrence of droughts 

is acknowledged as a critical factor in water resources planning and management (Bagmar and Khudri, 2021). Drought is a 

physical phenomenon and environmental hazard that can lead to catastrophe if reaction skills and vulnerability are insufficient 45 

to alleviate its effects (Ruwanza et al., 2022). 

In response to global apprehension regarding climate change and its impact on local climates, there has been a heightened 

focus on analyzing trends in severe drought occurrences in recent years. Several studies have made significant contributions 

to this area of research, such as the investigations conducted by Labudová et al. (2017), Shiru et al. (2018), Polong et al. (2019), 

Danandeh Mehr et al. (2019), Katipoğlu et al. (2022), Phuong et al. (2022), and Gond et al. (2023). Abarghouei et al. (2011) 50 

conducted a study in Iran to analyze the linear trends of Standardized Precipitation Index (SPI) indices at 3, 6, 9, 12, and 18-

month intervals over a span of 30 years. The study determined that the level of drought in the country is escalating. Caloiero 

et al. (2018) utilized the Mann-Kendall and ISM techniques to examine potential developments in SPI across New Zealand. 

They identified both upward and downward trends in various places. In a similar manner, Jin et al. (2020) employed the Mann-

Kendall and ISM techniques to analyze the trends in SPEI series at Zoige Wetland, China. Their findings indicated a prevalent 55 

pattern of drying in most of the studied regions. Mehr and Vaheddoost (2020) conducted a study in Ankara Province, Turkey, 

using the well-known Spearman rank-order correlation coefficient, Sen's method, and trend analysis to look at the trends in 

SPI and SPEI over 3-, 6-, and 12-month periods. The findings revealed that the province had five instances of severe drought 

between 1971 and 2016. There were some discrepancies in the timing of these drought occurrences when comparing the 

Standardized Precipitation Index (SPI) and the Standardized Precipitation Evapotranspiration Index (SPEI), especially when 60 

considering the 6- and 12-month periods. Although the observed drought events displayed a modest decrease in SPEI, the SPI 

did not demonstrate the same trend. Di Nunno et al. (2024) utilized the seasonal Mann-Kendall test and the Bayesian 

Changepoint Detection and Time Series Decomposition algorithm to assess the general trends for each cluster and SPI time 

scale. Additionally, they used these methods to detect sudden changes in trend and seasonality along the SPI time series, 

respectively. The findings of the seasonal Mann-Kendall (MK) test indicated statistically significant upward trends in the SPI 65 

for all clusters, except for the southeastern region of the United Kingdom, where downward trends were seen, although they 
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were not statistically significant. Following the abovementioned trend analysis in drought studies, drought forecasts are 

important for enhancing the understanding of drought dynamics. Drought forecasting plays a key role in providing early 

drought warnings to mitigate its impacts and improve drought management (Balti et al., 2020; Zhang et al., 2022; Tan et al., 

2024; Zhang et al., 2024). 70 

New and combined/hybrid models have become the main way to predict droughts, effectively handling the complex and 

changing nature of rainfall data. Consequently, hybrid models are extensively employed in drought research to enhance 

predictive accuracy. Alquraish et al. (2021) investigated the efficacy of three hybrid models: the Hidden Markov Model-

Genetic Algorithm (HMM-GA), ARIMA-Genetic Algorithm (ARIMA-GA), and ARIMA-Genetic Algorithm-Artificial 

Neural Network (ARIMA-GA-ANN), comparing them against the benchmarks of HMM and ARIMA for forecasting the 75 

Standardized Precipitation Index (SPI) in the Arabian Peninsula. The findings indicated that the hybrid models outperformed 

the benchmarked standalone model. Ding et al. (2022) employed a hybrid model integrating complementary ensemble 

empirical mode decomposition (CEEMD) and long short-term memory (LSTM) for predicting the standardized precipitation 

index (SPI) over various timescales in the Xinjiang Uygur Autonomous Region of China. The findings indicate that as the 

timescale increases, the predictive accuracy of the LSTM and CEEMD-LSTM models progressively enhances. Xu et al. (2022) 80 

employed a hybrid model integrating CEEMD and ARIMA for the prediction of SPI across various timescales in the Ningxia 

Hui Autonomous Region. The results indicate that the CEEMD–ARIMA model exhibited strong concordance with the SPI 

values, demonstrating that the combined model surpassed the performance of the individual model. Latifoglu and Ozger (2023) 

created a new method that combines phase transfer entropy (pTE) with the Tunable Q Factor Wavelet Transform (TQWT), 

which is improved using the Grey Wolf Optimization (GWO) algorithm. The subband data obtained from the SPI are assessed 85 

using Artificial Neural Networks (ANN), Support Vector Regression (SVR), Maximum Likelihood (ML), and the Gaussian 

Process Regression Model (GPR). The findings illustrate the enhanced efficacy of the pTE-GWO-TQWT-ML models 

compared to alternative approaches. The pTE-GWO-TQWT-GPR model exhibits superior predictive performance compared 

to the pTE-GWO-TQWT-ANN and pTE-GWO-TQWT-SVR models. Sibiya et al. (2024) used a combined model that merges 

CEEMDAN with ARIMA, LSTM, and ARIMA-LSTM methods to predict the Standardized Precipitation Index (SPI) at 90 

various time periods (SPI-6, SPI-9, and SPI-12) for Cape Town International Airport. The results indicated a significant 

alignment between the CEEMDAN-ARIMA-LSTM model and the SPI values, implying that the suggested hybrid model 

outperformed all other models. The aforementioned studies demonstrated the efficacy and adaptability of tailored hybrid 

models to meet diverse research objectives and enhance forecasting performance. A researcher must comprehend the strengths 

and weaknesses of each model to develop a viable hybrid-based model (Tan et al. 2023). Therefore, using hybrid-based models 95 

is suggested because they have become a popular choice for researchers looking for new ways to create very reliable drought 

forecasting models. 

 

Numerous researchers have developed extensive drought prediction models for the purpose of monitoring drought conditions. 

These models are associated with some challenges when applying preprocessing techniques in conjunction with predictive 100 

https://doi.org/10.5194/egusphere-2025-2733
Preprint. Discussion started: 8 July 2025
c© Author(s) 2025. CC BY 4.0 License.



4 

 

models (Sibiya et al. 2024). Methods like decomposition techniques (such as EMD, EEMD, CEEMD, CEEMDAN, and VMD) 

and wavelet transformation require a lot of computer power, especially when working with large amounts of data or in real-

time situations. To address these challenges, this study employed the Savitzky-Golay Filter in combination with CEEMDAN 

for data preprocessing. CEEMDAN can be easily affected by noise and often creates misleading Intrinsic Mode Functions 

(IMFs) when used directly on raw data, particularly in unstable time series like drought indices. By smoothing the data first 105 

with the Savitzky-Golay Filter, we reduce unnecessary high-frequency noise, which helps CEEMDAN create fewer IMFs and 

need fewer repetitions. This approach results in a reduced computational burden and yields better-separated intrinsic 

components. The application of the Savitzky-Golay filter enhances signal quality prior to decomposition, ensuring that 

meaningful components are retained. A smoother input resulting from Savitzky-Golay filtering facilitates quicker convergence, 

subsequently decreasing runtime and memory usage. With reduced noise and clearer IMFs, ARIMA and LSTM models are 110 

trained on more informative and stable inputs. This reduces the chance of the models getting confused by noisy data and helps 

them better understand real patterns in drought behavior, which leads to stronger and more reliable forecasting results. This 

paper discusses the novel hybrid model used for drought prediction. 

The current scenario entails trend analysis to evaluate the trend pattern prior to forecasting the SPI series. The modified Mann-

Kendall method and advanced trend analysis were utilized to examine the drought in the uMkhanyakude district. We identified 115 

change points in the SPI time series at intervals of 6, 9, and 12 months. We subsequently examined the SPI trend using a 

predictive modelling approach. The suggested methodology integrates the advantages of the Savitzky-Golay filter and 

Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (SG-CEEMDAN) alongside Autoregressive 

Integrated Moving Average (ARIMA) and Long Short-Term Memory (LSTM) models for the prediction of drought 

occurrences. Using the SPI index trend analysis and prediction together is a combined approach that enhances our 120 

understanding of how droughts work. We selected the SPI as the drought index due to its simplicity and adaptability. It solely 

necessitates precipitation data for calculation, rendering it attainable in areas with scarce meteorological information. Its 

adaptability to diverse temporal scales facilitates a thorough evaluation of drought severity across varying durations. 

Nonetheless, the SPI has constraints as it relies exclusively on precipitation and neglects variables such as temperature and 

soil moisture, which are incorporated in more sophisticated indices like SPEI. 125 

To the authors' knowledge, no prior research has investigated the changes in drought patterns related to trends and forecasted 

droughts using the predictive hybrid model SG-CEEMDAN-ARIMA-LSTM. Consequently, this model has not been 

introduced in the literature yet, even for alternative hydrometeorological applications. This paper enhances the evolving 

domain of climate modeling and drought prediction by introducing a novel hybrid forecasting method, clarifying its constraints, 

and suggesting potential directions for future improvements. The results derived from this study were meticulously analysed 130 

to provide valuable insights for: (1) the management of water resources to facilitate planning for water allocation and the 

implementation of adaptive strategies to alleviate drought impacts; (2) the design of infrastructure projects, including 
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reservoirs, irrigation systems, and water distribution networks, to accommodate evolving hydrological patterns; (3) the 

establishment of early warning systems for authorities to notify affected regions, thereby enabling prompt responses and 

preventive measures; (4) the enhancement of knowledge through the development of hybrid models for forecasting SPI-6, SPI-135 

9, and SPI-12; and (5) the identification of optimal models for meteorological drought forecasting in semi-arid regions.2.  

Material Methods 

2.1. The Study Area  

This study employed monthly precipitation records from 1980 to 2023, obtained from the South African Weather Service 

(SAWS) for the uMkhanyakude District in South Africa. The uMkhanyakude District Municipality is located in the far northern 140 

region of the KwaZulu-Natal (KZN) province (coordinates: 32.014489° S, 27.622242° E). The municipality covers a total area 

of 13,855 km², making it the second largest in the province, exceeded only by the Zululand Municipality. The uMkhanyakude 

District was formed immediately after the local government elections in December 2000 as part of municipal demarcation, 

encompassing some of the most destitute and underdeveloped areas of KwaZulu-Natal. The uMkhanyakude District consists 

of four local municipalities: uMhlabuyalingana, Jozini, Big Five Hlabisa, and Mtubatuba. The municipality is geographically 145 

surrounded by Mozambique to the north, the Indian Ocean to the east, the uThungulu River to the south, Zululand to the west, 

and the Kingdom of Swaziland to the northwest. Figure 1 depicts the spatial arrangement of the stations, superimposed on the 

National Aeronautics and Space Administration (NASA) Shuttle Radar Topography Mission (SRTM) digital elevation model 

of the research area (Farr et al., 2007). The stations are situated in a relatively low-lying region in the eastern section of South 

Africa.  150 
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Figure 1: Overview of the uMkhanyakude District (meteorological stations). 

 

 

2.2. Modified Mann-Kendall  155 

The modified Mann-Kendall methodology derives from the nonparametric Mann-Kendall method (Mann, 1945; Kendall, 

1975), which is extensively employed to detect trends in hydro-meteorological time series (Caloiero et al., 2011; Bard et al., 

2015; Wang et al., 2017; Mirabbasi et al., 2020). The modified Mann–Kendall (MMK) test was employed for serially correlated 

data exhibiting a substantial lag-1 autocorrelation coefficient, utilising the variance correction method proposed by Yue et al. 

(2002). Hamed and Rao (1998) created this methodology to eradicate all substantial autocorrelation in the time series. Under 160 

the assumption that the data are independent and identically distributed, the S statistic of the Mann-Kendall test is computed 

as follows (Sharifi et al. 2024): 

 

𝑆 = ∑ ∑ 𝑆𝑖𝑔𝑛(𝑥𝑗 − 𝑥𝑖)

𝑛

𝑗=𝑖+1

𝑛−1

𝑖=1

 

 

(1) 
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where n denote the sample size; 𝑥𝑖  and 𝑥𝑗  denote sequential 𝑖𝑡ℎ and 𝑗𝑡ℎ data points, respectively, and sign(.) is the sign 165 

function which can be computed as 

𝑆𝑖𝑔𝑛(𝑥𝑗 − 𝑥𝑖) = {

1,   𝑖𝑓 𝑥𝑗 − 𝑥𝑖 > 0

0,   𝑖𝑓 𝑥𝑗 − 𝑥𝑖 = 0

−1,   𝑖𝑓 𝑥𝑗 − 𝑥𝑖 < 0

 

 

(2) 

with the mean and variance of the 𝑆 statistics in equation are as follows (Helsel and Hirsch 1993; Ma et al. 2014; Ashraf et al. 

2023) 

𝐸(𝑆) = 0 (3) 

 

𝑉𝑎𝑟(𝑆) =
𝑛(𝑛 − 1)(2𝑛 + 5) − ∑ 𝑡𝑖(𝑡𝑖 − 1)(2𝑡𝑖 + 5)

𝑝
𝑖=1

18
 

(4) 

 170 

where 𝑝 is the number of tied groups and 𝑡𝑖 denotes the number of data points in the 𝑡𝑡ℎ group. The second term represents an 

adjustment for tied group or censored data. The standardized Z statistic is calculated as 

𝑍𝑀𝐾 =

{
 
 

 
 

𝑆 − 1

√𝑉𝑎𝑟(𝑆)
,       𝑆 > 0

0,                      𝑆 = 0
𝑆 + 1

√𝑉𝑎𝑟(𝑆)
,       𝑆 < 0

 

 

 

(5) 

The test statistic Z is used to measure the significance of the trends. In the modified Mann-Kendall approach, a modified 

variance of S is computed as follows (Hamed and Rao, 1998) 

𝑉𝑎𝑟(𝑆∗) = 𝑉𝑎𝑟(𝑆).
𝑛

𝑛∗
 (6) 

where 𝑛∗ is the effective sample size. The 
𝑛

𝑛∗
 ratio can be calculated as follows (Hamed and Rao, 1998) 175 

𝑛

𝑛∗
= 1 +

2

𝑛(𝑛 − 1)(𝑛 − 2)
∑(𝑛 − 𝑖)

𝑛

𝑖=1

(𝑛 − 𝑖 − 1)(𝑛 − 𝑖 − 2)𝑟𝑖  
 

(7) 

 

where 𝑟𝑖 denotes the lag-𝑖 significant autocorrelation coefficient of rank 𝑖 in a time series. Then the standardized statistic of 

the S statistic, denoted as Z, can be derived as  

𝑍𝑀𝑀𝐾 =

{
 
 

 
 

𝑆 − 1

√𝑉𝑎𝑟(𝑆∗)
,       𝑆 > 0

0,                      𝑆 = 0
𝑆 + 1

√𝑉𝑎𝑟(𝑆∗)
,       𝑆 < 0

 

 

 

(8) 
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If the calculated Z values (𝑍𝑀𝐾 and 𝑍𝑀𝑀𝐾) exceed the critical values of −𝑍1−𝛼 2⁄
 or fall below 𝑍1−𝛼 2⁄

, there is no discernible 180 

trend in the time series at the significance level of α. If the Z value is positive and exceeds 𝑍1−𝛼 2⁄
, the trend is upward; 

conversely, if the Z value is negative and falls below −𝑍1−𝛼 2⁄
, the trend is downward. 

 

2.3. Innovative Trend Analysis 

The Innovative Trend Analysis (ITA) method, initially introduced by Sen (2012), has been widely employed for detecting 185 

patterns in precipitation time series. Since its debut, the ITA technique has experienced substantial improvements in both 

mathematical and graphical aspects, as evidenced by Şen (2017) and Alashan (2018). The ITA method does not depend on 

assumptions of serial autocorrelation, normalcy, or record length, making it appropriate for both graphical and statistical trend 

analysis (Besha et al., 2022). Initially, the time series is bifurcated into two equal segments and organised in ascending order. 

The initial segment of the time series (𝑥𝑖 : 𝑖 = 1, 2,… , 𝑛 2⁄ ) is positioned along the horizontal x-axis, while the subsequent 190 

segment (𝑥𝑗 : 𝑗 = 𝑛 2⁄ + 1, 𝑛 2⁄ + 2,… , 𝑛) is situated along the vertical y-axis in the Cartesian coordinate system (Ashraf et al. 

2023). The ITA approach visually represents trend analysis, specifically indicating monotonic growing, declining, and 

trendless circumstances (Oztopal and Şen, 2017; Likinaw et al., 2023). A monotonically growing or declining trend can be 

identified when the majority of points are situated above or below the 45° (1:1 line), respectively. A trendless condition arises 

when the data points are clustered along the 45° line (Şen, 2012). We employ the magnitude of the slope parameter to convey 195 

information about monotonicity. The slope parameter of the ITA technique is a stochastic property dependent on the sample 

means of the first half (𝑛1) and the second half (𝑛2) of the time-series mean data values. According to Şen (2017), the straight-

line trend slope (𝑆𝐼𝑇𝐴) can be estimated using the following expression: 

𝑆𝐼𝑇𝐴 =
2𝑥(𝑥𝑗 − 𝑥𝑖)

𝑛
 

(9) 

where n represents the total number of observations, 𝑥𝑖 and 𝑥𝑗 are the arithmetic means of the first and second halves of the 

sub-series, respectively. Given that 𝑥𝑖 and 𝑥𝑗 are stochastic variables, the expected value of the slope can be determined by 200 

analysing the expectancies of both the first and second halves of the time series (Alashan, 2020; Harka et al., 2021): 

𝐸(𝑆𝐼𝑇𝐴) =
2

𝑛
[𝐸(𝑥𝑗) − 𝐸(𝑥𝑖)] 

(10) 

For the no trend condition, 𝐸(𝑥𝑗) = 𝐸(𝑥𝑖) , the 𝐸(𝑆𝐼𝑇𝐴) = 0  and standard deviation (SD) of the two half time-series 

(𝜎𝑥𝑗 = 𝜎𝑥𝑖 = 𝜎 √𝑛⁄ ), 𝜎 is the SD is of the parent series. If 𝐸(𝑥𝑗) ≠ 𝐸(𝑥𝑖), the differences between 𝐸(𝑥𝑗) and 𝐸(𝑥𝑖) gives the 

variance 

𝜎𝑆𝐼𝑇𝐴
2 =

8

𝑛2
[𝐸(𝑥𝑗) − 𝐸(𝑥𝑗𝑥𝑖) ] 

(11) 

and the SD of the slope 205 
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𝜎𝑆𝐼𝑇𝐴 =
2√2

𝑛√𝑛
𝜎√1 − 𝜌𝑥𝑗𝑥𝑖  

(12) 

In the stochastic processes, the term 𝜌𝑥𝑗𝑥𝑖  is the correlation coefficient between the two mean values, and can be estimated as 

𝜌𝑥𝑗𝑥𝑖 =
𝐸(𝑥𝑗𝑥𝑖) − 𝐸(𝑥𝑗)𝐸(𝑥𝑖)

𝜎𝑥𝑗𝜎𝑥𝑖
 

(13) 

In the end, the upper and lower confidence limit (CL) of the trend slope was calculated (Şen 2017): 

𝐶𝐿(1−𝛼) = 0 ± (𝑍1−𝛼 2⁄
) 𝜎𝑆𝐼𝑇𝐴 (14) 

𝑍1−𝛼 2⁄
 denotes the crucial slope for standardised time-series at ±1.96 for a 95% significance level or ±1.645 for a 90% 

significance level (Alashan, 2020). If the ITA slope value is beyond the lower and upper confidence limits, the null hypothesis 

of no significant trend should be rejected at the α significance level (Şen, 2017). In a two-tailed scenario, the null hypothesis 210 

(𝐻0) posits the absence of a trend in time-series data, while the alternative hypothesis (𝐻1) asserts the presence of a trend in 

time-series data at a significance level of α. If the slope, ±𝑆𝐼𝑇𝐴 > ±𝐶𝐿(1−𝛼), then (𝐻0) is discarded in favour of (𝐻1). The 

positive and negative values of 𝑆𝐼𝑇𝐴 signify an upward and downward trend in the time-series data, respectively (Şen, 2017).  

 

2.4. The SPI Calculation 215 

For the purpose of analysing the severity of drought which is caused by a lack of water supply as a result of reduced 

precipitation in response to rising demand, the SPI was designed by McKee et al. (1993) and is based on probability (Zuo, 

2021). Based on the cumulative likelihood of a specific amount of precipitation, the SPI indicator is calculated by fitting the 

precipitation throughout the same period with a certain distribution function. At its largest point, the SPI index represents the 

quantile of a normal distribution. Each time axis has an estimated drought index for 6, 9, and 12 months. This is based on the 220 

gamma probability density function, which considers the periodic distribution of precipitation for the corresponding data point. 

The expression of the density function for this distribution is as follow. 

𝑔(𝑥) =
1

𝛽𝛼Γ(𝛼)
𝑥𝛼−1𝑒

−
𝑥
𝛽 

(15) 

where 𝛼 is the shape parameter, 𝛽 is the scale parameter and 𝑥 is the precipitation amount, and Γ(𝛼) = ∫ 𝑦
∞

0

𝛼−1
𝑒−𝑦𝑑𝑦 is  

gamma function.  The maximum likelihood estimates of the parameters 𝛼 and 𝛽 are: 

𝛼 =
1

4𝐴
(1 + √1 +

4𝐴

3
) 

 

(16) 

 225 

𝛽 =
𝑥̅

𝑛
 

(17) 
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where 𝐴 = ln(𝑥̅) −
∑ ln(𝑥)

𝑛
, 𝑥̅ is the precipitation average and 𝑛 is the sample size. The following equation applies the acquired 

parameters to the cumulative probability distribution: 

 

𝐺(𝑥) = ∫𝑔(𝑥)𝑑𝑥 =
1

𝛽𝛼Γ(𝛼)
∫𝑥𝛼−1𝑒

−
𝑥
𝛽

𝑥

0

𝑑𝑥

𝑥

0

 

 

(18) 

 

G(x) represents the likelihood that the precipitation will be equal to or less than x.  The distribution function for precipitation 230 

needs to be adjusted because the real precipitation samples can contain a value of 0.  Based on this, we can calculate the 

cumulative probability as: 

𝐻(𝑥) = 𝑞 + (1 − 𝑞)𝐺(𝑥) (19) 

where q denotes the probability when precipitation equals zero. The probability of no rainfall, q, can be articulated as q = m/r, 

where m represents the number of days without rainfall and r denotes the number of days with rainfall (Song and Park, 2021). 

Consequently, H(x) is converted to the conventional random variable Z of the standard normal distribution, characterised by a 235 

mean of 0 and a variance of 1, resulting in: 

𝑆𝑃𝐼 = 𝑍 =

{
 
 

 
 −(𝑘 −

𝑐0 + 𝑐1𝑘 + 𝑐2𝑘
2

1 + 𝑑1𝑘 + 𝑑2𝑘
2 + 𝑑3𝑘

3
) , 0 < 𝐻(𝑥) ≤ 0.5

+(𝑘 −
𝑐0 + 𝑐1𝑘 + 𝑐2𝑘

2

1 + 𝑑1𝑘 + 𝑑2𝑘
2 + 𝑑3𝑘

3
) , 0.5 < 𝐻(𝑥) ≤ 1.0

 

 

(20) 

 

𝑘 =

{
 
 

 
 

√ln((
1

𝐻(𝑥)
)
2

) , 0 < 𝐻(𝑥) ≤ 0.5

√ln ((
1

1 − 𝐻(𝑥)
)
2

) , 0.5 < 𝐻(𝑥) ≤ 1.0

 

 

 

(21) 

where 𝑐0 = 2,515517 , 𝑐1 = 0.802853 , 𝑐2 = 0,010328 , 𝑑1 = 1,432788 , 𝑑2 = 0,189269 , 𝑑3 = 0,001308  are constants. 

Furthermore, the SPI indicator is a standardised normalised index, establishing a correlational relationship with likelihood. 

Table 1 presents the probability associated with each category of drought. 240 

 

Table 1. Drought classification using SPI values and corresponding event probability (Llyod-Hughes and Sanders 

2002). 

 

 245 
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SPI Values Drought Category Probability (%) 

2.00 ≤ 𝑆𝑃𝐼  Extremely wet 2.3 

1.50 ≤ 𝑆𝑃𝐼 ≤ 1.99  Severely wet 4.4 

1.00 ≤ 𝑆𝑃𝐼 ≤ 1.49 Moderately wet 9.2 

0.00 ≤ 𝑆𝑃𝐼 ≤ 0.99  Mildly wet 34.1 

−0.99 ≤ 𝑆𝑃𝐼 ≤ 0.00  Mild dry 34.1 

−1.49 ≤ 𝑆𝑃𝐼 ≤ −1.00  Moderate dry 9.2 

−1.99 ≤ 𝑆𝑃𝐼 ≤ −1.50  Severe dry 4.4 

𝑆𝑃𝐼 ≤ −2.00  Extreme dry 2.3 

 

2.5. The Savitzky-Golay Filter 

The Savitzky-Golay (SG) smoothing technique is a prevalent method employed for noise filtration. Savitzky and Golay (1994) 

introduced the SG filter as an effective technique for signal smoothing. The SG technique attenuates noise utilising two 

parameters: polynomial order and window size. By flexibly adjusting these two parameters, the SG filter can achieve 250 

exceptional performance in various pre-processing circumstances. The essence of this procedure involves fitting a low-degree 

polynomial to the samples within a sliding window using the least squares method, resulting in a new smoothed value for the 

central point derived by convolution. The SG filter is a specific variant of low-pass filter that substitutes each value in the time 

series with a new value derived from a polynomial fit to 2𝑚 + 1 surrounding points, including the point to be smoothed, where 

m is equal to or larger than the polynomial's order. The polynomial is articulated as follows: 255 

𝑝(𝑛) =∑𝑎𝑘𝑛
𝑘

𝑁

𝑘=0

 

(22) 

where 𝑁 is the power of the polynomial and 𝑁 ≤ 2𝑀 + 1. The following equation is used to determine the error between the 

estimated and original values; in order to find the desired polynomial result, this error must be minimised. 

𝜖𝑁 = ∑ (𝑝(𝑛) − 𝑥[𝑛])2
𝑀

𝑛=−𝑀

 

 

(23) 

The following form of discrete convolution can be used to express the filter's output: 

𝑦[𝑛] = ∑ ℎ[𝑚] 𝑥[𝑛 −𝑚]

𝑀

𝑚=−𝑀

= ∑ ℎ[𝑛 − 𝑚] 𝑥[𝑚]

𝑛+𝑀

𝑚=𝑛−𝑀

 

(24) 

This work employs the SG filter for two primary reasons: firstly, it enhances system performance by preserving the width and 

height of waveform peaks in noisy SPI, and secondly, it modifies the SPI while maintaining its fundamental qualities. 260 
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2.6. The Complete Ensemble Empirical Mode Decomposition with Adaptive Noise. 

The model's ability to fit functions and converge will be constrained by the complexity and volatility of the original time 

sequence, which in turn limits the model's predictive power. To overcome this challenge, the complete ensemble empirical 

mode decomposition (CEEMDAN) technique is used to pre-process the original nonstationary and nonlinear time sequence.   265 

Both empirical mode decomposition (EMD) and ensemble empirical mode decomposition (EEMD), have been enhanced by 

the CEEMDAN. The computational efficiency is improved, and the reconstructed sequences of both the EMD and EEMD 

algorithms are free of modal confusion and noise residuals (Zhang et al., 2023).  A residual term and a sequence of intrinsic 

mode functions (IMFs) are the building blocks of a complicated time series signal that the CEEMDAN breaks down. 

Step 1: Incorporate a constrained quantity of adaptive white noise into the original sequence 𝑥(𝑡)𝛿0𝜔
𝑖(𝑡) (𝑡 = 1, 2, 3,⋯ , 𝑁) 270 

𝑥𝑖(𝑡) = 𝑥(𝑡) + 𝛿0𝜔
𝑖(𝑡) (25) 

where N denotes the number of trials, 𝛿0  signifies a coefficient of intensity, and 𝜔𝑖(𝑡) indicates the ith realisation of a 

stochastic Gaussian process. 

Step 2: The residual 𝑟1(𝑡) and the first modal component 𝐼𝑀𝐹1 are obtained by decomposing each equation (1) using EMD. 

𝐼𝑀𝐹1(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =
1

𝑁
∑𝐸𝑀𝐷1

𝑁

𝑖=1

(𝑥𝑖(𝑡)) 
 

(26) 

 

𝑟1(𝑡) = 𝑥(𝑡) − 𝐼𝑀𝐹1(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  (27) 

 275 

In this context, 𝐸𝑀𝐷1(. ) denotes the initial IMF component produced by the EMD algorithm, while 𝑟1(𝑡) signifies the residual 

associated with the first stage. 

Step 3: Add white noise 𝛿1𝐸𝑀𝐷1(𝜔
𝑖(𝑡)) to the residual 𝑟1(𝑡) and further decomposed by EMD to obtain the second modal 

component 𝐼𝑀𝐹2 and residual 𝑟2(𝑡).  

𝐼𝑀𝐹2(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =
1

𝑁
∑𝐸𝑀𝐷1(𝑟1(𝑡) + 𝛿1𝐸𝑀𝐷1(𝜔

𝑖(𝑡)))

𝑁

𝑖=1

 

(28) 

 280 

𝑟2(𝑡) = 𝑟1(𝑡) − 𝐼𝑀𝐹2(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  (29) 

For the 𝑗 = 3, 4,⋯ ,𝑁, the jth IMF component and the jth residual can be computed as: 

𝐼𝑀𝐹𝑗(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =
1

𝑁
∑𝐸𝑀𝐷1(𝑟𝑗−1(𝑡) + 𝛿𝑗−1𝐸𝑀𝐷𝑗−1(𝜔

𝑖(𝑡)))

𝑁

𝑖=1

 

 

(30) 
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𝑟𝑗(𝑡) = 𝑟𝑗−1(𝑡) − 𝐼𝑀𝐹𝑗(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  (31) 

where 𝐸𝑀𝐷𝑗−1(. ) denotes the (𝑗 − 1)th intrinsic mode function component derived from the empirical mode decomposition 

technique, and 𝑟𝑗(𝑡) represents the residual following the jth decomposition. 

Step 3: Continue executing step 3 until the residual 𝑟𝑗(𝑡)  meets a predetermined termination criterion. 285 

The time series 𝑥(𝑡) can ultimately be articulated as 

𝑥(𝑡) = ∑𝐼𝑀𝐹𝑁(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ + 𝑟𝑁(𝑡)

𝑁

𝑖=1

 

(32) 

 

2.7. The Autoregressive Integrated Moving Average Model 

The Autoregressive Integrated Moving Average (ARIMA) model, pioneered by Box and Jenkins in the 1970s, serves as a 

robust and effective forecasting approach for time series analysis (Box et al., 2015). The ARIMA model, often known as the 290 

Box-Jenkins approach, is depicted through the concepts presented by Sibiya et al. (2024) in Figure 2. The ARIMA models 

predict future values of the time series as a linear combination of historical and residual data. This model comprises three 

components: the order of seasonal differentiation, autoregressive order, and moving average order (Montgomery et al., 2015). 

The backward shift operator B is employed to eliminate nonstationarity. A time series, 𝑦𝑡 , is called homogeneous nonstationary 

if it first order difference, 𝜔𝑦 = (1 − 𝐵)𝑦𝑡 = 𝑦𝑡 − 𝑦𝑡−1 or the dth difference 𝜔𝑡 = (1 − 𝐵)𝑑𝑦𝑡  is also stationary time series. 295 

Furthermore, 𝑦𝑡  is referred to as an ARIMA model with orders 𝑝, 𝑑 and 𝑞, noted 𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞). Hence, an 𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞) 

is often expressed as 

𝜙(𝐵)(1 − 𝐵)𝑑𝑦𝑡 = 𝑐 + 𝜃(𝐵)𝜀𝑡 (33) 

 

𝜙(𝐵) = 1 −∑𝜙𝑖𝐵
𝑖

𝑝

𝑖=1

     and    𝜃(𝐵) = 1 −∑𝜃𝑖𝐵
𝑖

𝑞

𝑖=1

 

(34) 

 

The backward shift operators for 𝐴𝑅(𝑝) and 𝑀𝐴(𝑞) are defined as 𝜙(𝐵)𝑦𝑡 = 𝑐 + 𝜀𝑡 and 𝑦𝑡 = 𝜇 + 𝜃(𝐵)𝜀𝑡 with 𝑐 = 𝜇 − 𝜙𝜇, 300 

where 𝜇 and 𝜀𝑡 are the mean and white noise, respectively and the 𝜀𝑡 is independent and normal distributed with mean 0 and 

variance of 𝜎𝜀
2. 
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Figure 2: The Box-Jenkins Steps Approach. 

 305 

2.8. The Long Short-Term Memory 

Long short-term memory (LSTM) algorithms represent a category of recurrent neural network (RNN) designs that are 

proficient in handling sequential input and identifying temporal relationships (Hochreiter and Schmidhuber, 1997). LSTM 

networks incorporate specific memory cells and gates for the efficient management and regulation of information flow over 

various time steps. Consequently, they can effectively represent the data input while maintaining essential dependencies and 310 

patterns. The LSTM methodology addresses the problem of vanishing gradients encountered by RNN algorithms. This occurs 

when the gradient diminishes to a level insufficient for effectively updating the weights throughout prolonged sequences. The 
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LSTM facilitates the flow of gradients across time by employing memory cells and gates. The model's foundational design 

primarily consists of three control gates: input, forget, and output. The activation function is represented by σ, whereas the cell 

states at time 𝑡 − 1 and 𝑡 are designated as 𝐶𝑡−1 and 𝐶𝑡 respectively. At time 𝑡 and time 𝑡 − 1, the cell possesses two concealed 315 

states, ℎ𝑡 and ℎ𝑡−1. Figure 3 illustrates the building of the LSTM unit, and the mathematical equations (35) to (40) for the 

LSTM method are provided below. Initially, by employing the model's forget gate, we may determine the current hidden state 

ℎ𝑡−1 and the degree to which the input 𝑥𝑡 has been preserved. The formula is 

𝑓𝑡 = 𝜎(𝑊𝑓𝑥𝑡 + 𝑈𝑓ℎ𝑡−1 + 𝑏𝑓) (35) 

Secondly, the input gate allows us to ascertain the volume of content from the input variable that can be retained in the cell 

state 𝐶𝑡 320 

𝑖𝑡 = 𝜎(𝑊𝑖𝑥𝑡 + 𝑈𝑖ℎ𝑡−1 + 𝑏𝑖) (36) 

𝐶̃𝑡 = 𝜎𝑐(𝑊𝑐𝑥𝑡 + 𝑈𝑖ℎ𝑡−1 + 𝑏𝑖) (37) 

𝐶𝑡 = 𝑓𝑡⨀𝐶𝑡−1 + 𝑖𝑖⨀𝐶̃𝑡 (38) 

The output gate of the LSTM produces outputs, and the hidden state of each cell is represented by the formula: 

𝑜𝑡 = 𝜎(𝑊𝑜𝑥𝑡 + 𝑈𝑜ℎ𝑡−1 + 𝑏𝑜) (39) 

ℎ𝑡 = 𝑂𝑡⨀𝜎ℎ(𝐶𝑡) (40) 

In the aforementioned formulas, 𝑊𝑓, 𝑊𝑖, and 𝑊𝑜 represent the weight matrices associated with the various control gates. The 

terms 𝑏𝑓, 𝑏𝑖, and 𝑏𝑜 correspond to the bias terms for each respective control gate. The notation 𝐶̃𝑡 signifies the complete input 

activation vector, while the operator ⨀ (Hadamard product) indicates the element-wise multiplication of the elements between 

two vectors. The 𝜎 activation function quantifies the amount of information that is transmitted through the various control 325 

gates. 
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Figure 3: Structure diagram of LSTM model. 

 

2.9. The ARIMA-LSTM hybrid Model 330 

Achieving accurate estimates of SPI index values through a forecasting model is essential for informed decision-making. 

Zhang (2003) offers a hybrid model wherein the ARIMA model extracts and predicts linear components, while the residuals, 

representing nonlinear data subcomponents, are then modelled by the LSTM approach. This study employs a hybrid model 

that integrates ARIMA and LSTM to predict both linear and nonlinear behaviours with optimal accuracy. 

ℋ𝑡 = ℒ𝑡 + ℵ𝑡 (41) 

where ℒ𝑡 and ℵ𝑡 denotes the linear and nonlinear components, respectively, for the hybrid technique which are computed using 335 

the initial time series (𝑦𝑡). Consider the original dataset at time t and the forecast results obtained from applying the ARIMA 
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model as ℒ̂𝑡 the prediction results. Thus, ℰ𝑡 = 𝑦𝑡 − ℒ̂𝑡 is the definition of the residual ℰ𝑡 that is derived by removing ℒ̂𝑡 from 

𝑦𝑡 . Subsequently we compute the value ℵ̂𝑡 by feeding the series of residuals into the LSTM model, which predicts the nonlinear 

component of the values. This equation may be written as  

ℵ̂𝑡 = 𝑓𝐿𝑆𝑇𝑀(ℰ𝑡−1, ℰ𝑡−2, … , ℰ𝑡−𝑛) + 𝜖𝑡, (42) 

  

where is a nonlinear expression associated with the LSTM model and 𝜖𝑡 is the random error. The combined forecasts from the 340 

two steps were then used to determine the value for the ARIMA-LSTM hybrid model.  As illustrated in Figure 4, the equation 

ℋ̂𝑡 = ℒ̂𝑡 + ℵ̂𝑡 predicts the linearity and nonlinearity values, respectively, using ARIMA and LSTM models. 

 

Figure 4: Predictive flowchart of the ARIMA-LSTM hybrid model. 

 345 

2.10. The development of the proposed SG-CEEMDAN-ARIMA-LSTM hybrid model 

Due to the great uncertainty of the drought data and the existence of complexity, nonlinearity and nonstationary trends, the 

single prediction model is greatly limited, however the hybrid method has better prediction accuracy. The SG-CEEMDAN-

ARIMA-LSTM algorithm that combines different techniques for improved accuracy in predicting drought based on the 

standardised precipitation index is proposed this study. This hybrid model is designed as a sequential framework where each 350 

step refines the data for subsequent modelling. The SG-CEEMDAN pre-processing stage enhances the data by smoothing and 
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decompose into the meaningful components. The components fed to the ARIMA-LSTM model that involves two-step process: 

the ARIMA for initial prediction and the LSTM model for refining and enhancing predictions. The hybrid model combines 

the ARIMA and the LSTM predictions to form the final hybrid forecasts. Figure 5 illustrates the proposed hybrid model 

algorithm. The process of SPI prediction based on ARIMA-LSTM combined with SG and CEEMDAN as is shown in Figure 355 

5. The process of the data smoothing, decomposition and prediction includes four main steps. 

Step 1: Data smoothing and decomposition: SG is first applied to SPI series then CEEMDAN decomposed data to obtain IMFs 

and residual. 

Step 2: A training set and a test are created from sequence that was obtained from step 1. 

Step 3: Create the SG-CEEMDAN-ARIMA-LSTM prediction model. 360 

Step 4: Evaluate the prediction model. The SG-CEEMDAN-ARIMA-LSTM model is evaluated by statistical criterion and 

Taylor diagram. 

 

Figure 5: Procedure of proposed SG-CEEMDAN-ARIMA-LSTM hybrid model. 

 365 
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2.11. Performance Evaluation 

To establish the predictive superiority of the SG-CEEMDAN-ARIMA-LSTM model, a comparison was conducted against 

other models, including ARIMA, LSTM, ARIMA-LSTM, SG-ARIMA-LSTM, and CEEMDAN-ARIMA-LSTM models. The 370 

performance of the proposed hybrid-based model is evaluated using three indicators namely, root mean square error (RMSE), 

coefficient of determination (𝑅2) and directional symmetry (DS). The high value of 𝑅2 and DS reflects the better performance 

of the forecasting model while the lower the value of RMSE illustrates better forecasting performance. 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑎𝑣𝑔)

2
𝑛

𝑖=1

 

 

(43) 

𝑅2 =
[∑ (𝑦𝑖 − 𝑦𝑎𝑣𝑔)(𝑦̂𝑖 − 𝑦̂𝑎𝑣𝑔)

𝑛
𝑖=1 ]

2

∑ (𝑦𝑖 − 𝑦𝑎𝑣𝑔)
2𝑛

𝑖=1 ∑ (𝑦̂𝑖 − 𝑦̂𝑎𝑣𝑔)
2𝑛

𝑖=1

 
(44) 

𝐷𝑆 =
100

𝑛 − 1
∑𝑑𝑖

𝑛

𝑖=2

 
(45) 

where  

𝑑𝑖 = {
1, (𝑦𝑖 − 𝑦𝑖−1)(𝑦̂𝑖 − 𝑦̂𝑖−1) > 0
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
(46) 

𝑛  is number of data points, 𝑦𝑖  and 𝑦̂𝑖  observed and forecasted, respectively. 𝑦𝑎𝑣𝑔  and 𝑦̂𝑎𝑣𝑔  an average of the actual and 375 

forecasted values, respectively. Furthermore, this study conducts a qualitative evaluation of the prediction model's performance 

using a Taylor diagram (Taylor, 2001). The Taylor diagram offers a statistical evaluation of the degree of agreement between 

the models in terms of their SD, RMSE, and R2, while providing a concise summary of the correspondence between predicted 

and observed values. The differences in SD, RMSE, and R2 values among the prediction models are depicted as individual 

points on a two-dimensional plot within the Taylor diagram. This diagram, though it follows a common structure, proves 380 

especially valuable when evaluating intricate models. 

3. Results and Discussion 

3.1. Rainfall Data Series  

Figure 6 illustrates the daily and monthly cumulative precipitation data recorded at the uMkhanyakude district meteorological 

stations in KwaZulu-Natal province, South Africa, from the early 1980s to 2023. The data comprising 20% was employed for 385 

prediction, whereas the data representing 80% was applied for training. The SPI computed utilising rainfall data from 
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meteorological stations in the uMkhanyakude district, which provide sufficiently extensive records and a consistent structure 

(Hırca et al., 2022). 

 
Figure 6: Time series plots of daily and monthly total rainfall data for uMkhanyakude district from early 1980’s to 2023. The (left) 390 

plot shows the daily rainfall data in millimeters (mm), illustrating the high variability and intermittent nature of daily rainfall events 

over the years. The (right) plot presents the monthly total rainfall data (mm), which smooths out the daily variability and reveals 

clearer patterns of rainfall distribution over time. 
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3.2. SPI Time Series and Trend Analysis 395 

This study SPI values for the 6-, 9-, and 12-month intervals were computed using the monthly mean time series shown in 

Figure 6. Figure 7 illustrates the time series of the SPI calculated for the 6-month (SPI-6), 9-month (SPI-9), and 12-month 

(SPI-12) intervals. All SPIs (SPI-6, SPI-9, and SPI-12) demonstrate numerous occurrences of moderate to severe droughts in 

the studied area. A significant drought episode was reported from late 2004 to 2009. Moreover, SPI-12 demonstrates a 

persistent drought spell that began between 2014 and 2016, leading to a decline in water supply conditions in the region 400 

(Bukhosini and Moyo, 2023). The statistics across all timelines indicate a troubling trend of extended and intense drought 

conditions in recent years. This underscores the pressing necessity for efficient water management and drought readiness in 

the area. Initially, we assess the trend throughout the research area employing nonparametric techniques. The ensuing 

conclusions will be obtained via advanced trend analysis methods employed to investigate SPI trends. 
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 405 

Figure 7: Standardized Precipitation Index (SPI) time series plots for uMkhanyakude district over 6-month (SPI-6), 9-month (SPI-

9), and 12-month (SPI-12) periods from early 1980’s to 2023. Positive SPI values (blue bars) indicate wetter-than-normal conditions, 

while negative SPI values (red bars) indicate drier-than-normal conditions. 
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Figure 8 illustrates the regional outcomes of the ITA methodology used to the 6-, 9-, and 12-month SPI series to ascertain the 410 

potential meteorological drought trend in the uMkhanyakude district. Figure 8 includes two vertical bands to elucidate the 

potential trends of arid and humid conditions: a red band indicating the drought threshold (SPI = -1.5) and a blue band denoting 

the wet threshold (SPI = 1.5). The zone between the two bands signifies normal conditions, hence facilitating the depiction of 

both low and high SPI trends using the ITA methodology. Each plot compares the first and second halves of the data series to 

identify trends.   415 

 

In general, for both Figure 8 and Table 3 all stations except Riverview indicate downwards trend for all time scales, in terms 

of the ITA. For an example, the ITA results obtained using 6-month SPI values exhibit a slightly decreasing trend in 

precipitation, moving toward the upper right quadrant, indicating the detection of dryer conditions over the 6-month timescale. 

Some points approach the severely wet threshold but do not cross it, indicating that there were no extreme wet periods, though 420 

some drier periods are evident near the severe dry line. The ITA results obtained using 9-month SPI values shows a more 

pronounced decreasing trend, indicates a relatively weaker increase in wet conditions over a 9-month timescale. Several points 

come close to the severe dry threshold, but the data remains mostly within the 95% confidence bounds, indicating moderate 

variability in precipitation trends. On the other hand, the SPI-12 plot  demonstrates a noticeable decreasing trend toward 

dryness, as many points fall below the no-trend line and approach the severe dry region. Riverview indicates the increasing 425 

trend across all time scales. The increasing distance between the black dots and the no-trend line highlights a shift toward drier 

conditions in the second half of the series. In general, the analysis suggests a gradual increase in precipitation for shorter 

periods (SPI-6), moderate upward trends for medium-term periods (SPI-9), and a more substantial shift toward dry conditions 

over longer periods (SPI-12) for Riverview. The variability is evident, but there is a clear progression toward drier conditions, 

particularly in the SPI-12 plot. This observation could be indicative of changing precipitation patterns, which is crucial for 430 

understanding drought risk and informing water resource management strategies. 
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Figure 8: Results of  Innovative trend analysis applied to different time scales values (SPI-6 (left), SPI-9 (middle), SPI-12 (right)). 

The blue shaded area represents the 95% confidence level area. The red and blue vertical lines represent the severe drought and 

severely wet, respectively. 435 
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Table 2 presents the results of the Mann-Kendall (MK) and Modified Mann-Kendall (MMK) trend tests for the Standardized 

Precipitation Index (SPI) over 6-month (SPI-6), 9-month (SPI-9), and 12-month (SPI-12) periods. The results indicate that 

across five stations all time scales both MK and MMK methods showed significant decreasing trend with negative Z-score 

values. For example, False Bay Park, Z_MK are 𝑍𝑆𝑃𝐼−6 = −10.89 𝑍𝑆𝑃𝐼−9 = −12.89, 𝑍𝑆𝑃𝐼−12 = −13.82 and Z_MMK are 440 

𝑍𝑆𝑃𝐼−6 = −6.27, 𝑍𝑆𝑃𝐼−9 = −6.28, 𝑍𝑆𝑃𝐼−12 = −6.29. The p-values of MK and MMK show the significance of the trends, with 

values way below 0.05 confirming statistically significant trends. In all cases except Riverview, the p-values are extremely 

low (<< 0.05), indicating strong evidence of significant decreasing trends in precipitation for all SPI periods. Both the MK 

and MMK tests confirm decreasing trends across all time scales, with the Z_MK and Z_MMK values becoming more negative 

as the SPI period increases, reflecting an intensifying downward trend over longer periods (from SPI-6 to SPI-12). For 445 

Riverview station, the results indicate an increasing trend  with positive Z-score values, i.e. Z_MK are 𝑍𝑆𝑃𝐼−6 = 2.85, 𝑍𝑆𝑃𝐼−9 =

3.84 , 𝑍𝑆𝑃𝐼−12 = 4.59  and Z_MMK are 𝑍𝑆𝑃𝐼−6 = 1.19 , 𝑍𝑆𝑃𝐼−9 = 2.16 , 𝑍𝑆𝑃𝐼−12 = 2.29 . In general, all these results are 

consistent with those shown using the ITA (see Table 3). The Riverview station experience increasing trend because it is 

located closer to the coast, hence it is influenced by a combination of geographic, oceanic and climatic factors. For an example, 

this station could be influenced by the Agulhas Current, which flows southwards along the east coast of South Africa, bringing 450 

warm, moist air from the Indian Ocean, and thus enhancing evaporation that brings constant availability of moisture in the 

atmosphere.     

 

Table 2: Statistical summary of trend analysis for SPI-6, SPI-9, and SPI-12 using Mann-Kendall (MK) and Modified Mann-Kendall 

(MMK) tests. 455 

False Bay Park 

Variables SPI-6 SPI-9 SPI-12 

𝑍𝑀𝐾  -10.89 -12.89 -13.82 

𝑝 − 𝑣𝑎𝑙𝑢𝑒𝑀𝑘  < 0.00 < 0.00 < 0.00 

Decision (𝑇𝑟𝑒𝑛𝑑𝑀𝐾) Decreasing Decreasing Decreasing 

𝑍𝑀𝑀𝐾  -6.27 -6.28 -6.29 

𝑝 − 𝑣𝑎𝑙𝑢𝑒𝑀𝑀𝑘  3.66 × 10−10 3.35 × 10−10 3.13 × 10−10 

Decision (𝑇𝑟𝑒𝑛𝑑𝑀𝐾) Decreasing Decreasing Decreasing 

Hlabisa Mbazwana 

𝑍𝑀𝐾  -2.89 -3.88 -5.31 

𝑝 − 𝑣𝑎𝑙𝑢𝑒𝑀𝑘  3.77 × 10−3 3.05 × 10−4 1.10 × 10−7 

Decision (𝑇𝑟𝑒𝑛𝑑𝑀𝐾) Decreasing Decreasing Decreasing 

𝑍𝑀𝑀𝐾  -2.26 -2.12 -2.20 

𝑝 − 𝑣𝑎𝑙𝑢𝑒𝑀𝑀𝑘  2.39 × 10−2 3.36 × 10−2 2.78 × 10−2 
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Decision (𝑇𝑟𝑒𝑛𝑑𝑀𝐾) Decreasing Decreasing Decreasing 

Pongolapoort Dam 

𝑍𝑀𝐾  -7.19 -8.74 -9.83 

𝑝 − 𝑣𝑎𝑙𝑢𝑒𝑀𝑘  6.12 × 10−13 < 0.00 < 0.00 

Decision (𝑇𝑟𝑒𝑛𝑑𝑀𝐾) Decreasing Decreasing Decreasing 

𝑍𝑀𝑀𝐾  -8.22 -5.44 -6.51 

𝑝 − 𝑣𝑎𝑙𝑢𝑒𝑀𝑀𝑘  2.22 × 10−16 5.40 × 10−8 7.41 × 10−11 

Decision (𝑇𝑟𝑒𝑛𝑑𝑀𝐾) Decreasing Decreasing Decreasing 

Mkuze Game Reserve 

𝑍𝑀𝐾  -3.66 -5.54 -6.67 

𝑝 − 𝑣𝑎𝑙𝑢𝑒𝑀𝑘  2.48 × 10−4 2.99 × 10−8 2.55 × 10−11 

Decision (𝑇𝑟𝑒𝑛𝑑𝑀𝐾) Decreasing Decreasing Decreasing 

𝑍𝑀𝑀𝐾  -2.44 -2.79 -2.22 

𝑝 − 𝑣𝑎𝑙𝑢𝑒𝑀𝑀𝑘  1.46 × 10−2 5.13 × 10−3 2.64 × 10−2 

Decision (𝑇𝑟𝑒𝑛𝑑𝑀𝐾) Decreasing Decreasing Decreasing 

Ingwavuma Manguzi 

𝑍𝑀𝐾  -2.38 -3.72 -4.92 

𝑝 − 𝑣𝑎𝑙𝑢𝑒𝑀𝑘  1.72 × 10−2 1.98 × 10−4 8.72 × 10−7 

Decision (𝑇𝑟𝑒𝑛𝑑𝑀𝐾) Decreasing Decreasing Decreasing 

𝑍𝑀𝑀𝐾  -1.61 -2.48 -2.27 

𝑝 − 𝑣𝑎𝑙𝑢𝑒𝑀𝑀𝑘  1.08 × 10−1 1.31 × 10−2 2.29 × 10−2 

Decision (𝑇𝑟𝑒𝑛𝑑𝑀𝐾) Decreasing Decreasing Decreasing 

Riverview 

𝑍𝑀𝐾  2.85 3.84 4.59 

𝑝 − 𝑣𝑎𝑙𝑢𝑒𝑀𝑘  4.34 × 10−3 1.25 × 10−4 4.25 × 10−6 

Decision (𝑇𝑟𝑒𝑛𝑑𝑀𝐾) Increasing Increasing Increasing 

𝑍𝑀𝑀𝐾  1.94 2.16 2.29 

𝑝 − 𝑣𝑎𝑙𝑢𝑒𝑀𝑀𝑘  5.12 × 10−2 3.07 × 10−2 2.19 × 10−2 

Decision (𝑇𝑟𝑒𝑛𝑑𝑀𝐾) Increasing Increasing Increasing 

 

Table 3: The results of the trend analysis for SPI-6, SPI-9, and SPI-12 obtained through a two-tailed test at a significance level of 

5% using ITA technique. 

False Bay Park 
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Variables SPI-6 SPI-9 SPI-12 

Slope −3.51 × 10−3 −1.14 × 10−3 −4.49 × 10−3 

Indicator -20.08 -20.12 -20.07 

±CI at 95% ±9.24 × 10−5 ±7.52 × 10−5 ±6.82 × 10−5 

Hlabisa Mbazwana 

Slope −1.68 × 10−3 −2.31 × 10−3 −1.86 × 10−3 

Indicator −20.52 −20.72 −20.64 

±CI at 95% ±6.81 × 10−5 ±9.35 × 10−5 ±7.15 × 10−5 

Pongolapoort Dam 

Slope 2.26 × 10−3 −2.88 × 10−3 −3.34 × 10−3 

Indicator −19.27 −19.40 −19.55 

±CI at 95% ±2.22 × 10−5 ±3.62 × 10−5 ±6.72 × 10−5 

Mkuze Game Reserve 

Slope −2.00 × 10−3 −3.04 × 10−3 −3.80 × 10−3 

Indicator −20.09 −20.22 −20.25 

±CI at 95% ±2.81 × 10−3 ±4.67 × 10−3 ±4.40 × 10−3 

Ingwavuma Manguzi 

Slope −1.61 × 10−3 −2.26 × 10−3 −2.88 × 10−3 

Indicator −21.96 −21.05 −20.77 

±CI at 95% ±6.81 × 10−5 1.01 ±× 10−5 ±1.19 × 10−5 

Riverview 

Slope 1.69 × 10−3 2.19 × 10−3 2.37 × 10−3 

Indicator 22.54 22.22 21.86 

±CI at 95% ±1.54 × 10−5 ±1.35 × 10−5 ±1.56 × 10−5 

 

3.3. SPI Time Series Forecasting Results 460 

The study proposes a hybrid model that applies the Savitzky-Golay (SG) filter to raw SPI data to reduce noise and improve 

forecasting analysis. To demonstrate the effectiveness of the SG filter, appropriate parameters such as window size and 

polynomial order were selected through trial and error using data from the study sites (Sibiya et al., 2024). A window size of 

21 and a polynomial order of 5 were chosen for smoothing. Figure 9 shows how the SG filter effectively tracks the general 

trend while preserving the shape of peaks and minimizing noise. This filter was applied to different time scales of the SPI time 465 

series. It autonomously calibrates according to peak distribution, exhibiting optimal performance, particularly with asymmetric 

peaks, while preserving peak height integrity. The application of the SG filter effectively mitigates short-term fluctuations and 

eliminates noise from the time series resulting in cleaner data, thereby enhancing the reliability of the subsequent 

decomposition process. By reducing noise, decomposition techniques can more accurately capture the authentic underlying 

patterns and components within the data. 470 
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Figure 9: SPI signals smoothed by Savitzky-Golay (SG). The blue line represents the original signal and red line is the SG 

smoothened signal.  

 

After applying a Savitzky-Golay filter to the series, the CEEMDAN algorithm decomposes the filtered SPI series into six 475 

subseries with different amplitudes and frequencies. The results from the False Bay Park station are utilized here as an 

illustration to prevent repetition. In these results, the decomposed set of time series consists of five IMF components and a 

residual component, as shown in Figure 10 (for all time scales). During the decomposition process, white Gaussian noise is 

added to create noisy signals. The original sequence exhibits high nonlinearity and nonstationarity, with the frequency of the 

IMF components gradually decreasing. Figure 10 depicts this gradual decrease in frequency as the order of the IMF 480 

components increases. As each IMF is further decomposed, it becomes less volatile and cyclical, which aligns with the 

characteristics of the decomposed IMF. Therefore, by predicting each IMF and the residual, the forecast precision can be 

enhanced. A forecasting model is then constructed for each component, and the prediction results are obtained by summing up 

the outputs of all predicted components. 
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 485 

Figure 10: Decomposition of Smoothed SPI-6, SPI-9 and SPI-12 Index Using CEEMDAN: Each IMF represents different frequency 

components of the SPI index, from high-frequency oscillations (IMF1) to low-frequency trends (IMF5), showing the variability in 

precipitation patterns over the years from 1980 to 2023. 

 

The models in Table 4 were compared for their prediction ability before and after time series decomposition in this research. 490 

The objective was to determine if smoothing and decomposing time series improves the model's prediction performance. 

Figures 11–16 show a comparison of the various models' prediction outcomes using the Taylor diagram. In general, all the 

models accurately replicate the original SPI time series at all timescales (refer to Figure 11 - 16) in terms of the time series 

plot. However, the SG-CEEMDAN-ARIMA-LSTM model (shown in red) appears to have the closest fit to the data, displaying 

superior accuracy across different phases, particularly in extreme values. Nonetheless, the hybrid models (SG-ARIMA-LSTM, 495 

CEEMDAN-ARIMA-LSTM, and SG-CEEMDAN-ARIMA-LSTM) show better precision in capturing peaks, rapid transitions 

and troughs compared to the standalone LSTM or ARIMA models.  Table 4 displays an assessment of the predictive 

performance metrics of several models utilising RMSE, 𝑅2 , and DS. As the period extends, the RMSE values decrease, 

however the DS and 𝑅2  values typically enhance (see Table 4). This indicates that the models' predictive accuracy 

progressively enhances with an extended duration, reaching its highest point at the 12-month interval. In terms of RMSE, the 500 

SG-CEEMDAN-ARIMA-LSTM model outperforms the others, exhibiting the lowest error values across all indices. For 
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example, Riverview station,  0.2165 for SPI-6, 0.0921 for SPI-9, and 0.0566 for SPI-12. This indicates that this model has the 

smallest prediction error, making it the most accurate in terms of error reduction. Concerning 𝑅2, which measures how well 

the model explains the variance in the data, SG-CEEMDAN-ARIMA-LSTM again leads with the highest values: 0.9602 for 

SPI-6, 0.9846 for SPI-9, and 0.9939 for SPI-12. This shows that the model provides the best fit to the data. The CEEMDAN-505 

ARIMA-LSTM model is the second-best performer, also exhibiting impressive results, particularly in 𝑅2, where it achieves 

higher values of 0.9483 for SPI-6, 0.9751 for SPI-9, and 0.9933 for SPI-12. The SG-ARIMA-LSTM model is the third-best 

hybrid performer, with RMSE values of 0.2262 for SPI-6, 0.1051 for SPI-9, and 0.05639 for SPI-12. The SG-ARIMA-LSTM 

model is the third-best performer, also exhibiting impressive results, particularly in 𝑅2, where it achieves higher values of 

0.9392 for SPI-6, 0.9763 for SPI-9, and 0.9904 for SPI-12. The SG-ARIMA-LSTM model is the third-best hybrid performer, 510 

with RMSE values of 0.2597 for SPI-6, 0.1157 for SPI-9, and 0.0567 for SPI-12. In general, these results highlight the efficacy 

of hybrid models, particularly those incorporating SG and CEEMDAN processes, in improving predictive accuracy across 

multiple timescales of SPI, particularly for the SG-CEEMDAN-ARIMA-LSTM model. These results are consistent with 

Taylor diagram (see Figure 11 - 16) which indicates a significant improvement in prediction accuracy after incorporating the 

SG and CEEMDAN signal decomposition technique as the hybrid model exhibits superior performance in terms of prediction 515 

accuracy across all timescales, surpassing other models. This suggests that the inclusion of these techniques enhances the 

models' ability to capture both short-term and long-term dependencies, thus making them more robust for drought prediction 

purposes. Therefore, this hybrid model appears to be the most effective for drought prediction in this analysis. These findings 

highlight the superiority of the proposed hybrid model in enhancing drought prediction accuracy compared to standalone 

approaches. 520 

 

Table 4. Performance measures for the comparison of observed and forecasted data of the models for SPI-6, SPI-9 and SPI-12 across 

various lead times using statistical criteria. 

False Bay Park 

Model SPI-6 SPI-9 SPI-12 

RMSE 𝑅2 DS RMSE 𝑅2 DS RMSE 𝑅2 DS 

ARIMA 0.3504 0.8435 0.8426 0.2431 0.8976 0.8525 0.1689 0.9421 0.8426 

LSTM 0.3128 0.9111 0.8327 0.2416 0.9521 0.8723 0.1626 0.9821 0.8519 

ARIMA-LSTM 0.2476 0.9194 0.8327 0.1650 0.9531 0.8723 0.0507 0.9952 0.9009 

SG- ARIMA-

LSTM 

0.2056 0.9458 0.8030 0.1348 0.9687 0.8218 0.0571 0.9940 0.9009 

C-A-L 0.2182 0.9375 0.8713 0.0978 0.9834 0.8218 0.0496 0.9953 0.8911 

SG-C-A-L 0.1835 0.9650 0.8416 0.1631 0.9836 0.8317 0.0349 0.9957 0.8941 

Mkuze Game Reserve 
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ARIMA 0.3752 0.8642 0.8419 0.3475 0.8957 0.8792 0.2202 0.9697 0.8730 

LSTM 0.3474 0.9121 0.8822 0.3354 0.9178 0.8030 0.1523 0.9890 0.8733 

ARIMA-LSTM 0.3160 0.9273 0.8416 0.1561 0.9823 0.8218 0.1079 0.9926 0.8730 

SG- ARIMA-

LSTM 

0.2307 0.9624 0.8515 0.1548 0.9825 0.8317 0.08252 0.9951 0.8019 

C-A-L 0.1969 0.9726 0.8317 0.1430 0.9850 0.8515 0.04497 0.9986 0.9208 

SG-C-A-L 0.1818 0.9742 0.8515 0.1232 0.9892 0.8617 0.04217 0.9990 0.9208 

Pongolapoort Dam 

ARIMA 0.4470 0.8797 0.8624 0.2993 0.9668 0.8119 0.1918 0.9763 0.8733 

LSTM 0.4470 0.8962 0.8732 0.2873 0.9467 0.8238 0.1824 0.9851 0.8829 

ARIMA-LSTM 0.4121 0.8969 0.8822 0.2599 0.9588 0.8921 0.1638 0.9862 0.8432 

SG- ARIMA-

LSTM 

0.2224 0.9617 0.8019 0.2064 0.9803 0.8515 0.0686 0.9969 0.8119 

C-A-L 0.2132 0.9649 0.8822 0.1572 0.9850 0.8218 0.0639 0.9975 0.8019 

SG-C-A-L 0.1453 0.9839 0.8824 0.1429 0.9858 0.8911 0.0635 0.9978 0.8921 

Hlabisa Mbazwana 

ARIMA 0.4704 0.8347 0.8624 0.4234 0.8698 0.8921 0.2321 0.9556 0.8142 

LSTM 0.3617 0.9041 0.8327 0.2163 0.9672 0.8119 0.1566 0.9806 0.8317 

ARIMA-LSTM 0.3269 0.9369 0.8515 0.2139 0.9677 0.8218 0.1457 0.9813 0.8426 

SG- ARIMA-

LSTM 

0.3011 0.9355 0.8416 0.1829 0.9747 0.8317 0.08540 0.9935 0.8218 

C-A-L 0.2497 0.9592 0.8218 0.1662 0.9792 0.8218 0.0825 0.9949 0.9009 

SG-C-A-L 0.1921 0.9795 0.8614 0.1332 0.9866 0.8218 0.07416 0.9952 0.9029 

Ingwavuma Manguzi 

ARIMA 0.4123 0.8716 0.8571 0.2706 0.9442 0.8750 0.2052 0.9784 0.8619 

LSTM 0.3843 0.8931 0.8738 0.2524 0.2524 0.8691 0.1614 0.9828 0.8095 

ARIMA-LSTM 0.3458 0.9044 0.8095 0.2428 0.9695 0.8541 0.8541 0.9847 0.8215 

SG- ARIMA-

LSTM 

0.2767 0.9397 0.8076 0.2001 0.9724 0.8809 0.0815 0.9958 0.8929 

C-A-L 0.2536 0.9503 0.8095 0.1945 0.9719 0.8214 0.0739 0.9972 0.9167 

SG-C-A-L 0.2314 0.9565 0.8214 0.1575 0.9823 0.8809 0.0634 0.9978 0.8809 

Riverview 

ARIMA 0.4375 0.8132 0.8106 0.1708 0.9474 0.8038 0.1137 0.9570 0.7973 
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LSTM 0.3212 0.8510 0.8108 0.1537 0.9400 0.8108 0.0982 0.9705 0.8273 

ARIMA-LSTM 0.2874 0.8767 0.8378 0.1314 0.9706 0.9595 0.0558 0.9934 0.9189 

SG- ARIMA-

LSTM 

0.2262 0.9392 0.8243 0.1051 0.9763 0.8243 0.05639 0.9904 0.8108 

C-A-L 0.2597 0.9483 0.8738 0.1157 0.9751 0.9324 0.05674 0.9933 0.9459 

SG-C-A-L 0.2165 0.9602 0.8919 0.09214 0.9846 0.9324 0.05664 0.9939 0.9189 

Note: C-A-L = CEEMDAN-ARIMA-LSTM 

 525 

 

 

Figure 11: The time series of observations and hybrid forecasting models for SPI prediction (Left) and their Taylor diagram plots 

at different timescales (Right) for SPI-6, SPI-9, and SPI-12 of Riverview meteorological station. 

https://doi.org/10.5194/egusphere-2025-2733
Preprint. Discussion started: 8 July 2025
c© Author(s) 2025. CC BY 4.0 License.



33 

 

 530 

Figure 12: The time series of observations and hybrid forecasting models for SPI prediction (Left) and their Taylor diagram plots 

at different timescales (Right) for SPI-6, SPI-9, and SPI-12 of Hlabisa Mbazwana meteorological station. 
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Figure 13: The time series of observations and hybrid forecasting models for SPI prediction (Left) and their Taylor diagram plots 

at different timescales (Right) for SPI-6, SPI-9, and SPI-12 of Ingwavuma Manguzi meteorological station. 535 
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Figure 14: The time series of observations and hybrid forecasting models for SPI prediction (Left) and their Taylor diagram plots 

at different timescales (Right) for SPI-6, SPI-9, and SPI-12 of Mkuze Game Reserve meteorological station. 
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Figure 15: The time series of observations and hybrid forecasting models for SPI prediction (Left) and their Taylor diagram plots 540 

at different timescales (Right) for SPI-6, SPI-9, and SPI-12 of Pongolapoort dam meteorological station 
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Figure 16: The time series of observations and hybrid forecasting models for SPI prediction (Left) and their Taylor diagram plots 

at different timescales (Right) for SPI-6, SPI-9, and SPI-12 of False Bay Park meteorological station. 

 545 

4. Discussion 

In this study, we utilized the Mann-Kendall and Modified Mann-Kendall tests to determine the drought trends index in 

meteorological variables within the basin. The MK and MMK trend methods showed a significant decrease in all SPI time 

scales based on rainfall data from five stations; however, the district, except for the Riverview station, showed an increasing 

trend in the uMkhanyakude district. The study's findings align with prior research by Kganvago et al. (2021) and Ngwenya et 550 

al. (2024). Ngwenya et al. (2024) performed a study employing the Mann-Kendall test to evaluate the SPI values at a 5% 

significance level, revealing sustained drought conditions in the Western Cape area. Kganvago et al. (2021) indicated a notable 

decline in drought conditions in the Western Cape area of South Africa. We have also employed the ITA, which enhances the 

MK and MMK tests in identifying trends, and the results underscore the importance of comprehending drought conditions. 
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The findings of our analysis validate previous research by Naik and Abiodun (2020), highlighting the necessity of performing 555 

trend studies on drought indicators to investigate the impacts of climate change. The study underscores the essential function 

of SPI as a primary variable in monitoring and forecasting droughts in the region, and its potential to mitigate the detrimental 

impacts of droughts and water scarcity in the uMkhanyakude district in the future. The objective was to determine if the model's 

predictive performance is enhanced by smoothing and deconstructing time series data. 

 560 

According to the statistical metrics in Table 4 and Taylor diagram (see Figure 11 - 16), highlight the effectiveness of hybrid 

models that incorporate filter and signal decomposition techniques (SG and CEEMDAN) in improving prediction accuracy, 

particularly for drought forecasting. These findings support other research (Taylan et al., 2021; Elbeltagi et al., 2023; Rezaiy 

and Shabri 2024b) highlighting the superior accuracy of hybrid drought forecasting models relative to an individual models. 

For example, Taylan et al. (2021) developed a hybrid model to forecast drought using precipitation data from Çanakkale, 565 

Gökçeada, and Bozcaada stations between 1975 and 2010. The study found that the hybrid models, which incorporated 

preprocessing techniques, performed better. Elbeltagi et al. (2023) utilized a hybrid model to estimate the SPI for 3, 6, and 12-

month drought periods from 2000 to 2019. The findings demonstrated that RSS-M5P model yielded the most precise SPI 

predictions, with MAE = 0.497, RMSE = 0.682, RAE = 81.88, RRSE = 87.22, and 𝑅2  = 0.507 for SPI-3; MAE = 0.452, 

RMSE = 0.717, RAE = 69.76, RRSE = 85.24, and 𝑅2  = 0.402 for SPI-6 and MAE = 0.294, RMSE = 0.377, RAE = 55.79, 570 

RRSE = 59.57, and 𝑅2  = 0.783 for SPI-12. The models employed to analyse drought in Jaisalmer, Rajasthan, yielded the most 

effective results, exceeding those of RSS-RF and RSS-RT. Additionally, Rezaiy and Shabri (2024b) introduced a W-EEMD-

ARIMA model for drought prediction. This model utilises monthly precipitation data from Kabul spanning 1970 to 2019. The 

𝑅2  value was 0.9946, the MAPE was 18.9674, the RMSE was 0.0736, the MAE was 0.0575, and the SPI-12 validation 

indicated that our model was accurate. The outcomes obtained here surpassed those of the ARIMA, Wavelet-ARIMA, and 575 

EEMD-ARIMA models in terms of raw data (RMSE: 0.0858, MAE: 0.0660, MAPE: 24.5411, 𝑅2 : 0.9925), analytical method 

(MAE: 0.1874, MAPE: 60.0220, 𝑅2 : 0.9361), and maximum likelihood estimation (RMSE: 0.1002, MAE: 0.0691, MAPE: 

23.7122, 𝑅2 : 0.9898). During the SPI-3, SPI-6, and SPI-9 periods, our hybrid model consistently outperformed other models. 

Our proposed hybrid model surpasses ARIMA, Wavelet-ARIMA, and EEMD-ARIMA in enhancing the precision of drought 

predictions, as evidenced by this data. 580 

In terms of term forecasting accuracy, the hybrid models, SG-CEEMDAN-ARIMA-LSTM in particular consistently surpassed 

all other models across all SPI timescales, according to a comparison of this study's results with previous research. All models 

successfully reproduced the original SPI time series. With the range values of  RMSE of 0.1453 - 0.2314 for SPI-6, 0.0921 – 

0.1631 for SPI-9, and 0.0349 – 0.07416 for SPI-12, and the highest 𝑅2 values of 0.9565 - 0.9839 for SPI-6, 0.9836 - 0.9892 

for SPI-9, and 0.9939 - 0.9990 for SPI-12 across all timescales, the SG-CEEMDAN-ARIMA-LSTM model showed the most 585 

proficiency in capturing extreme values and rapid transitions. That these methods, when combined, improve the models' 

capacity to represent drought in uMkhanyakude district, both in the short and long term, is supported by the data. This makes 

https://doi.org/10.5194/egusphere-2025-2733
Preprint. Discussion started: 8 July 2025
c© Author(s) 2025. CC BY 4.0 License.



39 

 

the models far better at foretelling when droughts will occur. In light of the foregoing, our study provides useful information 

regarding the use of the hybrid SG-CEEMDAN-ARIMA-LSTM model to the forecasting of meteorological droughts. 

 590 

5. Conclusion 

This study examined the trends in the Standardised Precipitation Index (SPI) over different timescales (SPI-6, SPI-9, and SPI-

12) utilising the Mann-Kendall (MK), modified Mann-Kendall (MMK) test, and the innovative trend analysis (ITA) protocol. 

The monthly rainfall data from uMkhanyakude district, South Africa, covering the years 1980 to 2023, was used for these 

calculations. Rainfall has been trending downward at a 95% confidence level, according to the MK and MMK tests. The ITA 595 

results supported these findings as well, revealing a declining trend with the most of data points going below the 1:1 line. In 

order to predict SPI data over various timescales, this research also used LSTM and autoregressive integrated moving average 

(ARIMA) models. Researchers used a hybrid model that combines the SG-CEEMDAN processing method with the ARIMA-

LSTM model to enhance the precision of SPI forecasts. They also used SG filtering and full ensemble empirical mode 

decomposition with adaptive noise (CEEMDAN). Figures 11–16 and Table 4 display results of a thorough comparison 600 

examination of the forecast outcomes. The results revealed that the inclusion of preprocessing techniques (SG filtering, 

CEEMDAN, and SG-CEEMDAN) significantly improved the model performance in forecasting SPI at all timescales. The 

performance consistently increased with higher timescales, potentially due to lower noise levels. Across different timescales, 

SG and CEEMDAN combined hybrid model consistently outperformed the individual models. Notably, the CEEMDAN-

ARIMA-LSTM model outperformed the SG-ARIMA-LSTM model at all timescales, while the SG-CEEMDAN-ARIMA-605 

LSTM model consistently exhibited the lowest root mean square error (RMSE) values across all indices. These results 

demonstrate that combining SG-CEEMDAN with ARIMA-LSTM has the potential to significantly enhance the accuracy of 

meteorological drought forecasting. 

The principal conclusion of the study is that ARIMA-LSTM, in conjunction with SG, CEEMDAN, and SG-CEEMDAN, 

serves as an effective instrument for early warning systems and meteorological drought prediction. The proposed methodology 610 

in this paper serves as a framework for modeling complex meteorological phenomena such as drought, particularly pertinent 

in semi-arid regions. Enhancing model performance and creating efficient models for weather forecasting can be achieved 

through techniques that address data noise, nonlinearity, and nonstationarity. To enhance water resource management, make 

informed decisions regarding agricultural output and tourism management, and establish regulations, it is essential to acquire 

extremely effective models for drought prediction. The omission of exogenous environmental variables in the SG-CEEMDAN-615 

ARIMA-LSTM model represents a significant drawback of the study. The model's forecast accuracy and real-world application 

are limited by disregarding these exogenous effects, which can substantially affect drought conditions. Future study should 

aim to include external variables, including temperature, soil moisture, vegetation indices, and anthropogenic factors such as 

land use and water management, to improve the model's efficacy. This integration would provide a more thorough 
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comprehension of drought dynamics, hence improving the model's accuracy and dependability in drought predictions. 620 

Additionally, it is essential to investigate alternate decomposition methods, such as enhanced CEEMDAN (iCEEMDAN), 

which may provide significant insights. 
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